22. Parametric Surfaces and Surface Integrals
d. Applications of Scalar Surface Integrals
3. Center of Mass
The center of mass of a surface is the point, \((\bar{x},\bar{y},\bar{z})\), whose coordinates are the balance points in the \(x\), \(y\) and \(z\) directions: \[ (\bar{x},\bar{y},\bar{z}) =\left(\dfrac{M_x}{M},\dfrac{M_y}{M},\dfrac{M_z}{M}\right) \] where the denominator is the mass, \[ M=\iint_S \delta\,dS \] and the numerators are the moments of the mass which are: \[ M_x=\iint_S x\delta\,dS \qquad M_y=\iint_S y\delta\,dS \qquad M_z=\iint_S z\delta\,dS \]
Find the height of the center of mass of the piece of the surface of the
sphere, \(S\), with radius \(\rho=3\) for which \(0<\phi<\dfrac{\pi}{2}\)
and \(0< \theta<\dfrac{\pi}{4}\) if the density of the sphere is given by
\(\delta(\phi,\theta)=1-\sin\phi\).
PY: Plot the surface not the solid.

The first step is to parameterize the sphere in spherical coordinates with \(\rho=3\): \[ \vec R(\phi,\theta) =\left\langle 3\sin\phi\cos\theta,3\sin\phi\sin\theta,3\cos\phi\right\rangle \] Next, the normal vector is the cross product of the tangent vectors: \[\begin{aligned} \vec{N}&=\vec{e}_\phi\times\vec{e}_\theta= \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ 3\cos\phi\cos\theta & 3\cos\phi\sin\theta & -3\sin\phi \\ -3\sin\phi\sin\theta & 3\sin\phi\cos\theta & 0 \end{vmatrix} \\ &=\hat{\imath}(--9\sin^2\phi\cos\theta) -\hat{\jmath}(-9\sin^2\phi\sin\theta) \\ &\qquad+\hat{k}(9\sin\phi\cos\phi\cos^2\theta--9\sin\phi\cos\phi\sin^2\theta) \\ &=\left\langle 9\sin^2\phi\cos\theta,9\sin^2\phi\sin\theta,9\sin\phi\cos\phi\right\rangle \end{aligned}\]
Notice that the normal is correctly a multiple of the position vector since the radial vector is perpendicular to the surface of a sphere. \[ \vec N=3\sin\phi\vec R \]
Then the magnitude of the normal is: \[ |\vec{N}|=\sqrt{81\sin^4\phi\cos^2\theta+81\sin^4\phi\sin^2\theta+81\sin^2\phi\cos^2\phi} =9\sin\phi \] We are ready now to compute the mass of the piece of a sphere: \[\begin{aligned} M&=\iint_S \delta\,dS =\iint_S \delta(\phi,\theta)\,|\vec{N}|\,du\,dv =\int_0^{\pi/4}\int_0^{\pi/2} (1-\sin\phi)9\sin\phi\,d\phi\,d\theta \\ &=\dfrac{9\pi}{4}\int_0^{\pi/2} (\sin\phi-\sin^2\phi)\,d\phi =\dfrac{9\pi}{4}\int_0^{\pi/2} \sin\phi-\,\dfrac{1-\cos(2\phi)}{2}\,d\phi \\ &=9\dfrac{\pi}{4}\left[-\cos\phi-\,\dfrac{1}{2}\left(\phi-\,\dfrac{\sin(2\phi)}{2}\right)\right]_0^{\pi/2} \\ &=9\dfrac{\pi}{4}\left[\left(-0-\,\dfrac{1}{2}\left(\dfrac{\pi}{2}-\,\dfrac{0}{2}\right)\right) -\left(-1-\,\dfrac{1}{2}\left(0-\,\dfrac{0}{2}\right)\right)\right] \\ &=\dfrac{9\pi}{4}\left(1-\,\dfrac{\pi}{4}\right) =\dfrac{9\pi(4-\pi)}{16}\approx1.517 \end{aligned}\] Now, the height of the center of mass is \(\displaystyle \bar{z}=\dfrac{M_z}{M}\). So we need the \(z\)-moment: \[\begin{aligned} M_z&=\iint_S z\,\delta\,dS =\int_0^{\pi/4}\int_0^{\pi/2} 3\cos\phi(1-\sin\phi)9\sin\phi\,d\phi\,d\theta \\ &=\dfrac{27\pi}{4}\int_0^{\pi/2} (\sin\phi-\sin^2\phi)\,\cos\phi\,d\phi \end{aligned}\] We use the substitution \(u=\sin\phi\). Then \(du=\cos\phi\,d\phi\) and \[\begin{aligned} M_z&=\dfrac{27\pi}{4}\int_0^1 (u-u^2)\,du =\dfrac{27\pi}{4}\left[\dfrac{u^2}{2}-\,\dfrac{u^3}{3}\right]_0^1 \\ &=\dfrac{27\pi}{4}\left(\dfrac{1}{2}-\,\dfrac{1}{3}\right) =\dfrac{9\pi}{8}\approx3.53 \end{aligned}\] Finally, we can find \(\bar{z}\): \[ \bar{z}=\dfrac{M_z}{M} =\dfrac{9\pi}{8}\dfrac{16}{9\pi(4-\pi)} =\dfrac{2}{4-\pi}\approx2.33 \]
This is reasonable because the radius of the sphere was \(3\).
Find the center of mass of the piece of the paraboloid \(z=\dfrac{x^2+y^2}{5}\) below \(z=5\) if the surface density is \(\delta=\dfrac{1}{\sqrt{\dfrac{4z}{5}+1}}\). The length of the normal vector and the mass were found in previous exercises.
\(\displaystyle \left(\bar x,\bar y,\bar z\right)_\text{CM} =\left( 0,0,\dfrac{5}{2}\right)\)
The paraboloid is parametrized by: \[ \vec R(r,\theta) =\left\langle r\cos\theta,r\sin\theta,\dfrac{r^2}{5}\right\rangle \] the length of the normal is: \[ |\vec N|=r\sqrt{\dfrac{4r^2}{25}+1} \] and the mass is: \[\begin{aligned} M&=\iint_S \delta\,dS =\int_0^{2\pi}\int_0^5 \dfrac{1}{\sqrt{\dfrac{4r^2}{25}+1}}r\sqrt{\dfrac{4r^2}{25}1}\,dr\,d\theta \\ &=2\pi\int_0^5 r\,dr=25\pi \end{aligned}\] By symmetry, \(\bar x=\bar y=0\). So we need the \(z\) component: \[ \bar z=\dfrac{M_z}{M} \] We compute the \(z\) moment of the mass: \[ M_z=\iint_S z\delta\,dS =2\pi\int_0^5 \dfrac{r^2}{5}r\,dr =\dfrac{2\pi}{5}\left[\dfrac{r^4}{4}\right]_0^5 =\dfrac{125\pi}{2} \] Consequently, the \(z\) component of the center of mass is: \[ \bar z=\dfrac{M_z}{M} =\dfrac{125\pi}{2}\dfrac{1}{25\pi}=\dfrac{5}{2} \]
Heading
Placeholder text: Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum